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INTRODUCTION 
 
Ovarian epithelial carcinomas are characterized by local proliferation and invasion of 
ovarian surface epithelium (OSE)-derived tumor cells, followed frequently by 
dissemination in the peritoneal cavity and formation of ascites containing clusters of 
tumor cells. This cancer is therefore characterized by the presence of two forms of call 
populations, some growing as solid tumors and others in suspension (1). At each step of 
malignant progression, adhesive mechanisms plays an important role, and integrins are 
likely to participate in these events (2-8). In most ovarian cancer cells, integrin αvβ3 is 
expressed and its ligand vitronectin is synthesized as a primary adhesion substrate. In fact, 
integrin αvβ3 is found at a significantly higher rate in primary ovarian cancer than in 
ovarian tumors of low malignant potential, a fact which points to a role of αvβ3 during 
ovarian cancer progression. Although the precise mechanism of tumor progression 
promoted via αvβ3 is still rather inconclusive, various studies support a potential role of 
αvβ3 in selective invasion and the generation of growth and survival signals (9-12). A 
recent study evidenced the correlation between αv-integrin expression and poor survival 
in ovarian carcinoma (11).  
 
The ability to non-invasively visualize and quantify αvβ3 integrin expression level will 
provide new opportunities to document tumor (tumor cells and sprouting tumor 
vasculature) receptor expression, more appropriately select patients considered for anti-
integrin treatment and monitor treatment efficacy in integrin-positive patients (13, 14). In 
the past few years, we have developed a series of peptide and antibody based probes for 
multimodality imaging of integrin expression in vivo. This annual report will only 
summarize the progress highly relevant to this OCRP pilot proposal. We hypothesize that 
ovarian cancer integrin expression can be visualized and quantified with suitably labeled 
RGD peptide antagonist of integrin αvβ3 and that the magnitude of tumor uptake from 
non-invasive molecular imaging may be well-correlated with tumor integrin expression 
levels.  
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BODY 
 
Chemistry and Radiochemistry 
 
During year 1 of the funding period, we have reported the development of RGD 
monomer, dimer, and tetramer labeled with 18F using N-succinimidyl-4-18F-
fluorobenzoate (18F-SFB) as the synthon. However, this procedure suffers from lengthy 
and tedious multistep synthetic procedures. As a result, it is challenging to automate and 
adversely decrease the overall radiolabeling yield. Nevertheless, the lead compound 18F-
FB-mini-PEG-E[c(RGDyK)]2 (18F-FPRGD2) is currently being translated into clinic for 
first-in-human studies.  

 
 
Fig. 1. Schematic structure of 18F-FPRGD2.  
 
The single species acute toxicity study has been done in collaboration with the Division 
of Veterinary Medicine and Surgery, the University of Texas M.D. Anderson Cancer 
Center (Table 1). No observed adverse effect was found. An exploratory IND is being 
prepared and will be submitted to FDA for phase 0 studies.   
 
Table 1. Acute toxicity study of 18F-FPRGD2 in Sprague-Dawley rats.  
 

Group Number 

Number of 
Animals 

Euthanasia 
(Study Day)  

Necropsy Procedures 

Histology/ 
Histopathology Male  Female  Necropsy 

Tissue 
Collection 

Organ 
Weights 

I  5  5  1 C C X C 

II  5  5  1 C C  
X

C 

I  5  5  14 C C X C 

II  5  5  14 C C  
X

C 

Found Dead or 
Accidentally Killed  As appropriate 

C  C  NA  C (tissue permitting) 

Moribund  C C NA C 
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C = comprehensive; L = limited tissues; X = specified tissues to be weighed 

 
The recent discovery that Cu(I) catalyzes the Huisgen 1,3-dipolar cycloaddition of organo 
azides with terminal alkynes to form 1,2,3-triazoles (15, 16), often referred to as ‘click 
chemistry’ (17), has lead to wide applications in combinatorial chemistry (18-20). This 
reaction could be carried out in high yields under mild conditions, and the 1,2,3-triazole 
formed has similar polarity and size with amide bond (21). Due to these favorable aspects 
with ‘click chemistry’, the use of this reaction for making 18F labeled RGD peptides have 
been successfully conducted in our lab.  

 
As shown in Fig. 1, both alkyne-tosylate (1) and azido-RGD2 were obtained in high 
yields. The alkyne-fluoride was prepared in situ and could be used directly for the 
reaction with azido-RGD2 to make the cold standard, which was purified by HPLC and 
confirmed by MALDI-TOF mass spectrometry. The radiochemical purity of the 18F-
labeled peptide 18F-FPTA-RGD2 was higher than 97% according to analytical HPLC. 
The specific radioactivity of 18F-FPTA-RGD2 was determined to be about 100–200 
TBq/mmol, as the unlabeled azido-RGD2 was efficiently separated from the product. 
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Figure 1. (A) Radiosynthesis of 18F-fluoro-PEG-alkyne intermediate and 1.3-dipolar 
cycloaddition with terminal azide. R = targeting biomolecule (peptides, proteins, 
antibodies et al.). (B) Structure of 18F-fluoro-PEG-alkyne labeled E[c(RGDyK)]2: 18F-
fluoro-PEG-triazole-E(RGDyK)2 (18F-FPTA-RGD2).  
 
The octanol/water partition coefficient (logP) for 18F-FPTA-RGD2 was -2.71±0.006, 
indicating that the tracer is slightly more hydrophilic than 18F-FB-RGD2 (18F-FRGD2, -
2.103±0.030) and 18F-FB-PEG3-RGD2 (18F-FPRGD2, -2.280±0.054) (22). 
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In vitro Cell Integrin Receptor-Binding Assay 

The receptor-binding affinity of RGD2 and FPTA-RGD2 was determined by performing 
competitive displacement studies with 125I-echistatin. All peptides inhibited the binding 
of 125I-echistatin (integrin αvβ3 specific) to U87MG cells in a concentration dependent 
manner. The IC50 values for RGD2 and FPTA-RGD2 were 79.2 ± 4.2 and 144 ± 6.5 nM, 
respectively (n = 3) (Fig. 2). In a parallel experiment, the IC50 value for FPRGD2 was 97 
± 4.8 nM. The comparable IC50 values of these compounds suggest that the introduction 
of miniPEG linker and triazole group had little effect on the receptor binding affinity.  
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Figure 2. Cell binding assay of E[c(RGDyK)]2 and FPTA-RGD2 using U87MG cells 
with competitive displacement studies using 125I-echistatin. The IC50 values for 
E[c(RGDyK)]2 and FPTA-RGD2 were 79.2 ± 4.2 and 144 ± 6.5 nM, respectively (n = 3). 
 
microPET Imaging Studies 

  Dynamic microPET scans were performed on U87MG xenograft model and 
selected coronal images at different time points after injecting 18F-FPTA-RGD2 were 
shown in Figure 3A. Good tumor-to-contralateral background contrast was observed as 
early as 10 min after injection (5.4 ± 0.7 %ID/g). The U87MG tumor uptake was 3.1 ± 
0.6, 2.1 ± 0.4, and 1.3 ± 0.4 %ID/g at 0.5, 1, and 2 h p.i., respectively (n = 3). Most 
activity in the non-targeted tissues and organs were cleared by 1 h p.i. For example, the 
uptake values in the kidney, liver, and muscle were as low as 2.7 ± 0.8, 1.9 ± 0.4, and 1.0 
± 0.3 %ID/g, respectively at 1 h p.i. 18F-FPTA-RGD2 was cleared mainly through the 
kidneys. Some hepatic clearance was also observed. The integrin αvβ3 specificity of 18F-
FPTA-RGD2 in vivo was confirmed by a blocking experiment where the tracer was co-
injected with c(RGDyK) (10 mg/kg). As can be seen from Figure 3B, the U87MG tumor 
uptake in the presence of non-radiolabeled RGD peptide (0.9 ± 0.3 %ID/g) is 
significantly lower than that without RGD blocking (2.1 ± 0.4 %ID/g) (P < 0.05) at 1 h 
p.i. 



7 

4 %ID/g

0 %ID/g

10 min         20 min        30 min         60 min       125 min

A

B

30 min         60 min 30 min         60 min

18
F-

T
PT

A
-R

G
D

2

B
lo

ck
in

g
 

Figure 3.  (A) Decay-corrected whole-body coronal microPET images of athymic female 
nude mice bearing U87MG tumor at 10, 20, 30, 60 and 125 min post-injection (p.i.) of 
about 2 MBq of 18F-FPTA-RGD2. (B) Coronal microPET images of U87MG tumor-
bearing mice at 30 and 60 min p.i. of 18F-FPTA-RGD2 with (denoted as “Blocking”) and 
without coinjection of 10 mg/kg mouse body weight of c(RGDyK). Tumors are indicated 
by arrows.  
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Figure 4. Comparison of 18F-FPTA-RGD2, 18F-FB-RGD2 (18F-FRGD2) and 18F-FB-
PEG3-RGD2 (18F-FPRGD2) in U87MG tumor, kidney, liver, muscle, and blood over 
time. 

 
The comparison of tumor and various organ uptake of 18F-FPTA-RGD2 with 18F-
FPRGD2 and 18F-FRGD2 were shown in Figure 5. The uptake in the U87MG tumor was 
slightly lower for 18F-FPTA-RGD2 which might be caused by integrin αvβ3 binding 
affinity difference (Fig. 4A). The kidney uptake for these three tracers was comparable 
(Fig. 4B) and the clearance rate was highest for 18F-FPTA-RGD2. 18F-FPTA-RGD2 had 
lowest liver uptake which was consistent with the hydrophilic sequence of these three 
compounds (Fig. 4C). The non-specific uptake in the muscle was at a very low level for 
all three compounds (Fig. 4D). 
 
In Vivo Metabolic Stability Studies 

The metabolic stability of 18F-FPTA-RGD2 was determined in mouse blood and urine 
and the in liver, kidney and tumor homogenates at 1 h after intravenous injection of 
radiotracer into a U87MG tumor-bearing mouse. The extraction efficiency of all organs 
was between 86% and 99% (Table 2). The lowest extraction efficiency was found for the 
kidney. There are 1% to 41% of the total activity could not be trapped on the C-18 
cartridges, which can be related to very hydrophilic metabolites and protein-bound 
activity. After ACN elution, the radioactivity of each sample was injected onto an 
analytical HPLC and the HPLC chromatograms are shown in Figure 6. The fraction of 
intact tracer was between 75 % and 99 % (Table 2). Although we did not identify the 
metabolites, we found that all metabolites eluted earlier from the HPLC column than the 
parent compound (Fig. 5), which behaved similarly to 18F-FRGD2 (23) and 18F-FPRGD2 
(22).   
 
Table 2. Extraction efficiency, elution efficiency, and HPLC analysis of soluble fraction 
of tissue homogenates at 1 h post-injection of 18F-FPTA-RGD2. 
Fraction Blood Urine Liver Kidney U87MG 

  Extraction efficiency (%) 

Insoluble fraction 0.8 ND 10.3 13.3 7.5 

Soluble fraction 99.2 ND 89.7 86.7 92.5 

  Elution efficiency (%) 

Unretained fraction 2.8 0.4 33.9 12.8 18.5 

Wash water  8.8 0.5 7.4 3.9 5.2 

Acetonitrile eluent 88.4 99.1 58.7 83.3 76.4 

  HPLC analysis (%) 

Intact tracer 75.9 99.7 81.6 89.1 82.4 
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Figure 5. Metabolic stability of 18F-FPTA-RGD2 in mouse blood and urine samples and 
in liver, kidney and U87MG tumor homogenates at 1 h after injection. The HPLC profile 
of pure 18F-FPTA-RGD2 (Standard) is also shown. 
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KEY ACCOMPLISHMENTS 
 

• Completed single-dose acute toxicity study of 18F-FPRGD2 preparing for eIND 
application and first-in-human test; 

• Develop a novel click chemistry strategy to label RGD peptides with 18F with 
shorter reaction time and easier chemistry than traditional 18F-SFB synthon; 
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REPORTABLE OUTCOMES 
 
Publications:  
 
Wu Z, Li Z-B, Cai W, Chin FT, Li F, Chen X 
  18F-labeled mini-PEG spacered RGD dimer (18F-FPRGD2): synthesis and 

microPET imaging of αvβ3 integrin expression 
Eur J Nucl Med Mol Imaging 2007;34(11):1823-1831.  

 
Wu Z, Li Z-B, Cai W, He L, Chin FT, Li F, Chen X 

microPET Imaging of Tumor αvβ3 Integrin Expression Using 18F-labeled PEGylated 
Tetrameric RGD Peptide (18F-FPRGD4) 
J Nucl Med, 2007;48:1536-44.  

 
Li ZB, Wu Z, Chen K, Chin FT, Chen X. 

Click Chemistry for 18F-Labeling of RGD Peptides and microPET Imaging of 
Tumor Integrin alphavbeta3 Expression 
Bioconjug Chem 2007;18(6):1987-1994.   

 
 
 
 
Conference Abstracts:  
 
Li Z-B, Wu Z, Chen K, Chin FT, Chen X 

Click Chemistry for 18F-Labeling of RGD Peptides and microPET Imaging of 
Tumor αvβ3 Integrin Expression  
Joint Molecular Imaging Conference, Providence, Rhode Island, September 2007 
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CONCLUSIONS 
 
In conclusion, we have developed a novel click chemistry strategy to label dimeric RGD 
peptide for tumor integrin expression. We have also completed the GLP toxicity studies 
of 18F-FPRGD2 and an eIND application is to be filed very soon for first-in-human 
studies. Due to the unexpected leave of a stellar postdoctoral fellow for a tenure-track 
faculty position, this project is somewhat delayed. The correlation of tumor uptake and 
receptor density in ovarian cancer was not finished by the end of the 2nd year funding 
period. A no-cost-extension (NCE) was filed and a new postdoc has been trained to 
continue the project and a final report will be submitted by the end of the NCE period.  
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